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Abstract 
 

This paper introduces a new generalization of the transmuted additive Weibull 
distribution by Elbatal and Aryal [10], based on a new family of lifetime distribution. 
We refer to the new distribution as a new transmuted additive Weibull (NTAW) 
distribution. The new model contains some of lifetime distributions as special cases 
such as the transmuted additive Weibull, exponentiated modified Weibull, 
exponentiated Weibull, exponentiated exponential, transmuted Weibull, Rayleigh, 
linear failure rate and exponential distributions, among others. The properties of the 
new model are discussed and the maximum likelihood estimation is used to evaluate 
the parameters. Explicit expressions are derived for the moments and examine the 
order statistics. An application to real data set is finally presented for illustration. 
 
Keywords: transmutation; survival function; exponentiated exponential; order 
statistics; maximum likelihood estimation. 
 
Introduction 
For complex electronic and mechanical systems, the failure rate often exhibits non-
monotonic (bathtub or upside-down bathtub unimodal) failure rates (Xie and Lai 
[35]). Distributions with such failure rates have attracted a considerable attention of 
researchers in reliability engineering. In software reliability, bathtub shaped failure 
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rate is encountered in firmware, and in embedded software in hardware devices. 
Firmware plays an important role in functioning of hard drives of large computers, 
spacecraft and high performance aircraft control systems, advanced weapon systems, 
safety critical control systems used for monitoring the industrial process in chemical 
and nuclear plants (Zhang et al. [36]). The upside down bathtub shaped failure rate is 
used in data of motor bus failures (Mudholkar et al. [25])), for optimal burn-in 
decisions (Block and Savits[6]), for ageing properties in reliability (Gupta and 
Gupta[13], Jiang et al.[16]) and the course of a disease whose mortality reaches a 
peak after some finite period and then declines gradually. 
 The Weibull distribution is a widely used statistical model for studying fatigue 
and endurance life in engineering devices and materials. Many examples can be found 
among the electronics, materials, and automotive industries. Recent advances in 
Weibull theory have also created numerous specialized Weibull applications. Modern 
computing technology has made many of these techniques accessible across the 
engineering spectrum. Despite its popularity, and wide applicability the traditional 2-
parameters and 3-parameters Weibull distribution is unable to capture the entire 
lifetime phenomenon for instance the data set which has a non-monotonic failure rate 
function. Recently several generalization of Weibull distribution has been studied. An 
approach to the construction of flexible parametric models is to embed appropriate 
competing models into a larger model by adding shape parameter. Some recent 
generalizations of Weibull distribution including the exponentiated Weibull, extended 
Weibull, modified Weibull are discussed in Pham et al. [27] and references therein, 
along with their reliability functions. The hazard function of the Weibull distribution 
can only be increasing, decreasing or constant. Thus, it cannot be used to model 
lifetime data with a bathtub shaped hazard function, such as human mortality and 
machine life cycles. For many years, researchers have been developing various 
extensions and modified forms of the Weibull distribution, with different number of 
parameters. A state of the art survey on the class of such distributions can be found in 
Laiet al [19]. Xie and Lai [35] proposed a 4-parameters additive Weibull (AW) 
distribution as a competitive model. A random variable X is said to have an AW 
distribution if its cumulative distribution function (cdf) is 

 ���� = 1 − �	
�������,		� ≥ 0                                                                  (1) 

where β > 0 and ν > 0 are shape parameters, and θ > 0 and γ > 0 are scale 
parameters. 
 Elbatal and Aryal [10] introduced the transmuted additive Weibull (TAW) 
distribution with cumulative distribution function (cdf) and probability density 
function (pdf) (forx > 0) given by 

 ���� = �1 + �� �1 − �	
�������� − � �1 − �	
�������� ,                          (2) 

 and 
 !��� = 
"νx#	$ + %&�'	$��	
������� �1 + � − 2��	
��������,               (3) 

where β > 0 and ν > 0 are shape parameters, and θ > 0 and γ > 0 are scale 
parametersand |λ| ≤ 1 is a transmuted parameter.The TAW model shows flexible 
properties as it contains a lot of well-known distributions as special cases such as 
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exponentiated Weibull, transmuted Weibull, Weibull and linear failure rate 
distributions. 
 Many distributions have been made using cumulative distribution function 
(cdf),���, probability density function (pdf)-���, or survival function ,̅��� that one 
can rely on, as a baseline distribution, to introduce new models. The Exponentiated 
generalization is the first generalization allowing for no monotone hazard rates, 
including the bathtub shaped hazard rate. The cdf of the new distribution is defined by ���� = ,∝���,where	∝> 0. The exponentiated exponential distribution has been 
introduced by Ahuja and Nash [2] and further studied by Gupta and Kundu [14]. The 
first generalization allowing for no monotone hazard rates, including the bathtub 
shaped hazard rate, is the exponentiated Weibull (EW) distribution due to Mudholkar 
and Srivastava [24], and Mudholkar et al. [25]. 
 An interesting idea of generalizing a distribution, known in the literature by 
transmutation, is derived by using the Quadratic Rank Transmutation Map (QRTM) 
introduced by Shaw and Buckley [30].Merovci [21], introduced transmuted 
exponentiated exponential distribution. 
 According to the transmutation generalization approach, the cdf satisfies the 
relationship ���� = �1 + ��,��� − �0,���1 .																																																																																					(4) 
 Where	G�x� the cdf of the baseline distribution. 
 This article presents a modification of the transmutation generalization approach 
given in (4). The proposed modification generalizes the rank of the transmutation map 
by replacing the constant power by additional parameters. The following definition 
gives the mechanism of generating a new family of lifetime distributions building on 
a base model, that is, according to this modification. 
Definition 1.1 Let ,��� be the cumulative distribution function (cdf) of a non-
negative absolutely continuous random variable, ,���be strictly increasing on its 
support, and ,�0� = 0 define a new cdf, F(x), out of ,���as ���� = �1 + λ�0G�x�14 − λ0G�x�15, x > 0	                                                            (5) 

 where 6, 7 > 0for0 > � > −1,and 6 > 0	, �6 + 6/4� ≥ 7 ≥ :; <for0 < � < 1. 

This modification due to its flexibility in accommodating all forms of the hazard rate 
function as seen from Figure (4) (by changing its parameter values) seems to be an 
important distribution that can be used. Another importance of the proposed model 
that it is very flexible model that approaches to different distributions when its 
parameters are changed. 
 We present special cases of the new family of lifetime distribution. 
Exponentiation. for 			� = 0 , the distribution function (5) becomes ���� = 0,���1> ,                                                                                                   (6) 
which is the distribution function of the exponentiation. 
Transmutation. for 			7 = 1	?@A	6 = 2 , the distribution function (5) becomes ���� = �1 + ��,��� − �0,���1 ,                                                                       (7) 
which is the distribution function of the transmutation. 
Transmutation exponentiation. for 		7 = 6/2 , the distribution function (5) becomes ���� = �1 + ��0,���1BC − �0,���1∝,                                                                  (8) 
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which is the distribution function of the transmutation exponentiation. 
 
 
 The rest of the article is organized as follows. In Section2, introduces the 
proposed a new generalization of the transmuted additive Weibull according to the 
new class of distribution. In Section 3, we find the reliability function, hazard rate and 
cumulative hazard rate of the subject model. The Expansion for the pdf and the cdf 
Functions is derived in Section 4. In section 5, The statistical properties include 
quantile functions, median ,  moments and moment generating function are given,. In 
Section 6, order statistics are discussed. In Section 7, we introduce the method of 
likelihood estimation as point estimation, give the equation used to estimate the 
parameters, using the maximum product spacing estimates and the least square 
estimates techniques. Finally, we fit the distribution to real data set to examine it and 
to suitability it with nested models. 
 
A New Transmuted Additive Weibull Distribution 
 In this section, we introduce a new distribution called the new transmuted 
Additive Weibull distribution denoted by (NTAW) distribution as a generalization of 
the TAW distribution. The cumulative distribution function of (NTAW) model 
(for	� > 0) denoted by ���, �, ", D, %, &, 7, 6� ≡ ���� becomes 
 ���� � �1 � �� �1 � �	
��������> � � �1 � �	
��������;,                          (9) 

where as its pdf can be expressed, 
 !��� � 
"νx#	$ � %&�'	$��	
������� F�1 � ��7 �1 � �	
��������>	$

� �6 �1 � �	
��������;	$G, 
 
 
(10) 

 where β � 0, D, δ � 0 and α � 0 are shape parameters, and θ � 0 and γ � 0 are 
scale parametersand |λ| + 1 is a transmuted parameter. The random variable x with 
the density function (10) is said to have a new transmuted additive Weibull 
distribution (NTAW) distribution. 
 The proposed NTAW model that it is very flexible model that approaches to 
different distributions when its parameters are changed. The flexibility of the NTAW 
is explained in Table 1 when their parameters are carefully chosen. 
 

Table 1: The special cases of the NTAW distribution 
 

Distribution Parameters Author J K L M N O P 
TEMW   1   P/Q  Ashour and Eltehiwy [4] 
TEAW      P/Q   
TAW      1 2 Elbatal and Aryal[10] 
EAW 0        
AW 0     1  Xie and Lai [35] 
EW 0 0      Mudholkar and Srivastava[24] 
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EE 0  1 0 -  - Gupta and Kundu[14] 
EMW 0  1    - Elbatal[9] 
NTMW     1   New 
NTW    0    New 
NTR  0   2   New 
NTLFR   1  2   New 
NTE   1 0    New 
TELFR   1  2 P/Q   
TEW  0    P/Q   
TER  0   2 P/Q  Merovci[22] 
TEE   1 0 - P/Q  Merovci[21] 
TMW   1   1 2 Khan and King[17] 
TLFR   1  2 1 2  
TW  0    1 2 Aryal and Tsokos[3] 
TR  0   2 1 2 Kundu and Raqab[18] 
TE   1 0 - 1 2 Shaw and Buckley[30] 
ELFR   1 0 - 1 2 Sarhan and Kundu[27] 
ER 0 0   2  -  
MW 0  1   1 - Sarhan and Zaindin[29] 
LFR 0  1  2 1 -  
W 0 0    1 - Weibull[34] 
R 0 0   2 1 -  
E 0  1 0 - 1 -  

 
 Figures 1 and 2 illustrates some of the possible shapes of the pdf and cdf of the 
NTAW distribution for selected values of the parameters �, ", D, %, &, 7	?@A	6 
respectively 

 
 

Figure 1: Probability Density Function of the NTAW distribution. 
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Figure 2: Distribution Function of theNTAW distribution. 

 
 
Reliability Analysis 
The characteristics in reliability analysis which are the reliability function (RF), the 
hazard rate function (HF) and the cumulative hazard rate function (CHF) for the 
NTAWD are introduces in this section. 
 
Reliability Function 
The reliability function �RF� also known as the survival function, which is the 
probability of an item not failing prior to some time t, is defined byR�x� � 1 �F�x�.The reliability function of the NTAW distribution denoted by RUVWX��, ", D, %, &, 7, 6�, can be a useful characterization of lifetime data analysis. It 
can be defined as, RUVWX��, �, ", D, %, &, 7, 6� � 1 � FUVWX��, �, ", D, %, &, 7, 6�, 
the survival function of is given by, RUVWX��, �, ", D, %, &, 7, 6� � 1 � F�1 � �� �1 � �	
��������> � � �1 � �	
��������;G .												�11� 
 Figure 3 illustrates the pattern of the called the new transmuted additive Weibull 
distribution (NTAW) distribution reliability function with different choices of 
parameters �, ", D, %, &, 7	?@A	6		. 

  
Figure 3: Reliability Function of theNTAW distribution. 

 
Hazard Rate Function 
The other characteristic of interest of a random variable is the hazard rate function �HF�. the new transmuted additive Weibull distribution also known as instantaneous 
failure rate denoted by hUVWX�x�, is an important quantity characterizing life 
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phenomenon. It can be loosely interpreted as the conditional probability of failure, 
given it has survived to the timet. The HF of the NTAWD is defined by hUVWX��, �, ", D, %, &, 7, 6� � fUVWX��, �, ", D, %, &, 7, 6�/RUVWX��, �, ", D, %, &, 7, 6�, 

hUVWX��, �, ", D, %, &, 7, 6� � 
"νx#	$ � %&�'	$��	
������� F�1 � ��7 �1 � �	
��������>	$ � �6 �1 � �	
��������;	$G
�1 � ��\1 � �	
�������]> � �\1 � �	
�������]; 	.												�12� 

 Figure 4 illustrates some of the possible shapes of the hazard rate function of the 
new transmuted additive Weibull distribution for different values of the 
parameters�, ", D, %, &, 7	?@A	6. 

  
Figure 4: Hazard Rate of the NTAW distribution. 

 
Cumulative Hazard Rate Function 
The Cumulative hazard function �CHF� of the new transmuted additive Weibull 
distribution, denoted by HUVWX�x, �, ", D, %, &, 7, 6�, is defined as  

HUVWX�x, �, ", D, %, &, 7, 6� � _`a hUVWX�x, �, ", D, %, &, 7, 6�dx � �lnRUVWX�x, �, ", D, %, &, 7, 6�, 
HUVWX�x, �, ", D, %, &, 7, 6� � � ln e1 � F�1 � �� �1 � �	
��������> � � �1 � �	
��������;Gf. (13) 

 
Expansion for the pdf and the cdf Functions 
In this section, we introduced another expression for the pdf and the cdf functions 
using. The Maclaurin expansion to simplifying the pdf and the cdf forms. 
 
Expansion for the pdf Function 
From equation (10) and using the expansion �1 � z�h � ∑ �	$�jk�h�l�k�h	l�$�l! zlnloa .																																										                                         (14) 

Which holds for |z| = 1 and k � 0.  Using (14) in Equation. (10), then the pdf 
function of the new transmuted additive Weibull distribution can be written as: 
 !�x, �, ", D, %, &, 7, 6� � q�1 � λ�δr��1�sΓ�δ�i! Γ�δ � i� 
"νx#	$ � %&�'	$��	
��������s�$�n

soa v  

 																						�λαr��1�lΓ�α�j! Γ�α � j�
n
loa 
"νx#	$ � %&�'	$��	
��������l�$�  

      (15) 
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Expansion for the cdf Function 
Using expansion (14) to Equation (9), then the cdf function of the new transmuted 
additive Weibull distribution can be written as: 

 ��x, �, ", D, %, &, 7, 6� 	= q�1 + λ�r�−1�sΓ�δ + 1�i! Γ�δ − i + 1�
n
soa �	
��������s�$�v  

 −xλr�−1�lΓ�α + 1�j! Γ�α − j + 1�
n
loa �	
��������l�$�y  

     (16) 

 Equation (16) can be written as: 
 ��x, �, ", D, %, &, 7, 6� = q�1 + λ�rr�−1�s�hΓ�δ + 1�k! i! Γ�δ − i + 1�

n
hoa

n
soa

:
"�z + %�'��i + 1�<hv  

 −xλr r �−1�l�{Γ�α + 1�j!m! Γ�α − j + 1�
n

{oa
n
loa :
"�z + %�'��j + 1�<{y  

        (17) 

 
Statistical properties 
In this section, we discuss the most important statistical properties of the NTAW 
distribution. 
 
Quantile function 
The quantile function is obtained by inverting the cumulative distribution (17), where 
the }-th quantile �~ of the NTAW model is the real solution of the following 
equation: 

 �1 + λ�rr�−1�s�hΓ�δ + 1�k! i! Γ�δ − i + 1�
n
hoa

n
soa :
"x�# + %x�'��i + 1�<h 

 

 −λr r �−1�l�{Γ�α + 1�j!m! Γ�α − j + 1�
n

{oa
n
loa :
"x�# + %x�'��j + 1�<{ − } = 0.  

          (18) 

 An expansion for the median � follows by taking	} = 0.5. 
 
Moments 
The r��non-central moments μ�� = E����or (moments about the origin) are given by 
theorem 5.1 below: 
 
Theorem 5.1If X is from a NTAW distribution, then the r��non-central moments is 
given by 

μ�� = �1 + λ�δrr�−1�s�hΓ�δ��γ�i + 1��hi! k! Γ�δ − i� x θνΓ���h��## �
�θ�i + 1���������

+ γβΓ���h���# �
�θ�i + 1���������

yn
hoa

n
soa  

−λαrr�−1�l��Γ�α��γ�j + 1���j! �! Γ�α − j� x θνΓ������## �
�θ�j + 1���������

+ γβΓ�������# �
�θ�j + 1���������

yn
�oa

n
loa . 
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Where Γ�. � denote the gamma function, i.e, 

Γ�?� � _ ��	$�	�A�n
a . 

 
Proof: 

μ�� � E���� � _ ��!�x, ", %, &, 7, 6�dx,n
�  

μ�� � _ �q�1 � λ�δr��1�sΓ�δ�i! Γ�δ � i�
n
soa 
"νx��#	$ � %&���'	$��	
��������s�$�vn

�
� λαr��1�lΓ�α�j! Γ�α � j�

n
loa �
"νx��#	$ � %&���'	$��	
��������l�$��� dx 

μ�� � �1 � λ�δr��1�sΓ�δ�i! Γ�δ � i�
n
soa �$ � λαr��1�lΓ�α�j! Γ�α � j�

n
loa � .																																						�19� 

 Now, using 

�	
�����l�$� � r��1�h�i � 1�hγhxh��!
n
�oa  �	�����l�$� � r ��1�h�j � 1�hθhxh#�!

n
�oa . 

We have 

�$ � _
"νx��#	$ � %&���'	$��	
��������s�$�A�n
a  

� _�"νx��#	$��	�����s�$��	
�����s�$�A�n
a �_
%&�'��	$��	�����s�$��	
�����s�$�A�n

�  

� r��1�h�i � 1�hγh�!
n
�oa

νθΓ���h��## ��θ�i � 1��������� �r��1�h�i � 1�hγh�$�! βΓ���h���# ��θ�i � 1���������
n
�oa  

� r ��1�h�i � 1�hγh�! x θνΓ���h��## ��θ�i � 1��������� � γβΓ���h���# ��θ�i � 1��������� y																																														�20�n
�oa 	

 Similarly , for � we get 

� �r��1���j � 1��γ��!
n
�oa x θνΓ������## ��θ�j � 1��������� � γβΓ�������# ��θ�j � 1��������� y																																															�21� 

 Substituting (20) and (21) in (19) we get   

μ�� � �1 � λ�δrr��1�s�hΓ�δ��γ�i � 1��hi! k! Γ�δ � i� x θνΓ���h��## ��θ�i � 1��������� � γβΓ���h���# ��θ�i � 1��������� yn
hoa

n
soa  
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−λαrr��1�l��Γ�α��γ�j � 1���j! �! Γ�α � j� x θνΓ������## ��θ�j � 1��������� � γβΓ�������# ��θ�j � 1��������� yn
�oa

n
loa .																																�22� 

 This completes the proof. 
 In particular, when r = 1, Eq. (22) yields the mean of the NTAW distribution, �, as 

� � �1 � λ�δrr��1�s�hΓ�δ��γ�i � 1��hi! k! Γ�δ � i� x θνΓ�h��#�$# ��θ�i � 1��������� � γβΓ�h����$# ��θ�i � 1��������� yn
hoa

n
soa  

�λαrr��1�l��Γ�α��γ�j � 1���j! �! Γ�α � j� x θνΓ����#�$# ��θ�j � 1��������� � γβΓ������$# ��θ�j � 1��������� yn
�oa

n
loa . 

 The n��central moments or (moments about the mean) can be obtained easily from 
ther�� non-central moments throw the relation: 

m  � E�X � μ�¢ �r��μ�¢	�E�X��.¢
�oa  

 Then the n��central moments of the NTAW is given by: 

£¤ �r����¥	�¥
�oa �1 � λ�δrr��1�s�hΓ�δ��γ�i � 1��hi! k! Γ�δ � i� x θνΓ���h��## ��θ�i � 1��������� � γβΓ���h���# ��θ�i � 1��������� yn

hoa
n
soa  

�λαrr��1�l��Γ�α��γ�j � 1���j! �! Γ�α � j� x θνΓ������## ��θ�j � 1��������� � γβΓ�������# ��θ�j � 1��������� yn
�oa

n
loa . 

 
The Moment Generating Function 
Theorem 5.2 If X is from a NTAW distribution, then, its mgf is 

����� � �1 � λ�δ r ��1�s�ht{�i � 1�hγhΓ�δ��!£! i! Γ�δ � i�
n

s,{,hoa x θνΓ�{�h��## ��θ�i � 1��¦������ � γβΓ�{�h���# ��θ�i � 1��¦������ y
� λα r ��1�l��t§�j � 1��γ�Γ�α�¨! �! j! Γ�α � j�

n
l,§,�oa x θνΓ :§����## <


θ�j � 1��©������ � γβΓ :§�����# <

θ�j � 1��©������ y. 

Proof: 
The moment generating function,����� can be easily obtained from the r�� non-
central moment through the relation 

����� � _ e�`!�x, ", %, &, 7, 6�dx,n
�  

����� � _ e�` �q�1 � λ�δr��1�sΓ�δ�i! Γ�δ � i�
n
soa


�#`�«���'��«��¬«:®�¯®�<�°���vn
�

� λαr��1�lΓ�α�j! Γ�α � j�
n
loa 
"νx#	$ � %&�'	$��	
��������l�$��dx 
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����� = q�1 + λ�δr�−1�sΓ�δ�i! Γ�δ − i�
n
soa _
"νx#	$ + %&�'	$�e�`�	
��������s�$�n

a
A�v

− λαr�−1�lΓ�α�j! Γ�α − j�
n
loa _
"νx#	$ + %&�'	$�e�`�	
��������l�$�A�n

a
 

 ����� = �1 + λ�δr�−1�sΓ�δ�i! Γ�δ − i�
n
soa �$ − λαr�−1�lΓ�α�j! Γ�α − j�

n
loa � .  

                       (23) 
 

 We have 

�$ = _
"νx#	$ + %&�'	$�e�`�	
��������s�$�A�n
a

 

= _�"νx��#	$�e�`�	�����s�$��	
�����s�$�A�n
a

+_
%&�'��	$�e�`�	�����s�$��	
�����s�$�A�n
�

 

= r r�−1�ht{(i + 1)hγh�!£! x θνΓ({�h��## )(θ(i + 1))¦������ + γβΓ({�h���# )(θ(i + 1))¦������ y																																														(24)		n
�oa

n
±oa  

 Similarly , for � we get 

� =rr(−1)�t§(j + 1)�γ�¨! �!n
�oa

n
²oa x θνΓ(§����## )(θ(j + 1))©������ + γβΓ(§�����# )(θ(j + 1))©������ y.																																																		(25) 

 Substituting (24) and (25) in (23), Then, the moment generating function of the 
NTAW distribution is given by, 

��(�) = (1 + λ)δ r (−1)s�ht{(i + 1)hγhΓ(δ)�!£! i! Γ(δ − i)n
s,{,hoa x θνΓ({�h��## )(θ(i + 1))¦������ + γβΓ({�h���# )(θ(i + 1))¦������ y

− λα r (−1)l��t§(j + 1)�γ�Γ(α)¨! �! j! Γ(α − j)n
l,§,�oa x θνΓ :§����## <


θ(j + 1)�©������ + γβΓ :§�����# <

θ(j + 1)�©������ y. 

 This completes the proof. 
 
Order Statistics 
The order statistics and their moments have great importance in many statistical 
problems and they have many applications in reliability analysis and life testing. The 
order statistics arise in the study of reliability of a system. The order statistics can 
represent the lifetimes of units or components of a reliability system. Let Y$, Y , . . . , Y¢ 
be a random sample of size n from the NTAW(�, ", D, %, &, 7, 6) with cumulative 
distribution function(cdf), and the corresponding probability density function(pdf), 
as in (9) and (10), respectively. Let Y($), Y( ), . . . , Y(¢) be the corresponding order 
statistics. Then the pdf of Y(�:¢), 1 ≤ r ≤ n,denoted by f�:¢(y),is given by, f�:¢(y) = C�:¢fUVWX(�, ", D, %, &, 7, 6)0FUVWX(�, ", D, %, &, 7, 6)1�	$0RUVWX(�, ", D, %, &, 7, 6)1¢	�. 
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 Then f�:¢(X) = C�:¢ e
"νx#	$ + %&�'	$��	
������� F(1 + �)7 �1 − �	
��������>	$ − �6 �1 − �	
��������;	$Gf ∗ (1 + �) �1 − �	
��������> − � �1 − �	
��������; ∗ 
 F1 − ¹(1 + �) �1 − �	
��������> − � �1 − �	
��������;ºG¢	� 				 (26) 

 
 Therefore, the pdf of the largest order statistic �¥is given by: !¼½(�)o@ e
"νx#	$ + %&�'	$��	
������� F(1 + �)7 �1 − �	
��������>	$ − �6 �1 − �	
��������;	$Gf 
∗ F(1 + �) �1 − �	
��������> − � �1 − �	
��������;G¢	$ 																																											(27) 

 While, the pdf of the smallest order statistic �$is given by: !¼�(�)o@ e
"νx#	$ + %&�'	$��	
������� F(1 + �)7 �1 − �	
��������>	$ − �6 �1 − �	
��������;	$Gf ∗ 

F1 − ¹(1 + �) �1 − �	
��������> − � �1 − �	
��������;ºG¥	$ 																																	(28) 
 
Estimation of the Parameters 
In this section, we introduce the method of likelihood to estimate the parameters 
involved, then give the equations used to estimate the parameters using the maximum 
product spacing estimates and the least square estimates techniques. 
 
Maximum Likelihood Estimation 
The maximum likelihood estimators (MLEs) for the parameters of the new 
transmuted additive Weibull distribution NTAW(�, ", D, %, &, 7, 6)is discussed in this 
section. Consider the random sample �$, � , . . . , �¥ of size @ from new transmuted 
exponentiated additive distribution NTAW(�, ", D, %, &, 7, 6) with probability density 
function in (11), then the likelihood function can be expressed as follows 

L(�$, � , . . . , �¥, �, ", D, %, &, 7, 6) =ÁÂo$
¥ !UVWX(�Â, �, ", D, %, &, 7, 6), 

 L(�$, � , . . . , �¥, �, ", D, %, &, 7, 6) = ∏Âo$¥ 
"ν�Â#	$ + %&�Â'	$��	
��Ä���Ä��*  
 

 F(1 + �)7 �1 − �	
��Ä���Ä���>	$ − �6 �1 − �	
��Ä���Ä���;	$G  

 Hence, the log-likelihood function   Å= ln L becomes 
 Å =r�@
"D�Âz	$ + %&�Â'	$� −¥

Âo$ r
"�Âz + %�Â'�+¥
Âo$  

 

 r�@ F(1 + �)7 �1 − �	
��Ä���Ä���>	$ − �6 �1 − �	
��Ä���Ä���;	$G¥
Âo$  

 
      (29) 

 Differentiating Equation (29) with respect to �, ", D, %, &, δ and6then equating it to 
zero, we obtain the MLEs of �, ", D, %, &, δ and6 as follows, 
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ÆÅÆ� = rÇ 7 �1 � �	
��Ä���Ä���>	$ � 6 �1 � �	
��Ä���Ä���;	$��1 � ��7\1 � �	
��Ä���Ä��]>	$ � �6\1 � �	
��Ä���Ä��];	$�È,																																								�30�		
¢
so$  

 ÆÅÆ" �r D�Âz	$�"D�Âz	$ � %&�Â'	$�
¥
Âo$ �r�Âzn

Âoa  
 

 �rÇ�Âz�	
��Ä���Ä�� F��7 � 1�7 �1 � �	
��Ä���Ä���>	 � ��6 � 1�6 �1 � �	
��Ä���Ä���;	 G
�1 � ��7\1 � �	
��Ä���Ä��]>	$ � �6\1 � �	
��Ä���Ä��];	$ È ,¢

so$  

 

 
(31) 

 ÆÅÆD �r �Âz	$"�1 � D ln �Â��"D�Âz	$ � %&�Â'	$�
¥
Âo$ �r�Âz "ln �Ân

Âoa  
 

 �r�	
��Ä���Ä����Âz "ln �Â� F��7 � 1�7 �1 � �	
��Ä���Ä���>	 � ��6 � 1�6 �1 � �	
��Ä���Ä���;	 G
�1 � ��7\1 � �	
��Ä���Ä��]>	$ � �6\1 � �	
��Ä���Ä��];	$

¢
so$

 

 
(32) 

 ÆÅÆ% �r &�Â'	$�"D�Âz	$ � %&�Â'	$� �r�Â'n
Âoa �¥

Âo$  
 

 rÇ�Â'�	
��Ä���Ä�� F��7 � 1�7 �1 � �	
��Ä���Ä���>	 � ��6 � 1�6 �1 � �	
��Ä���Ä���;	 G
��1 � ��7\1 � �	
��Ä���Ä��]>	$ � �6\1 � �	
��Ä���Ä��];	$� È,			¥

Âo$  

 

 
(33) 

ÆÅÆ& �r �Â'	$%�1 � & �@ �Â��"D�Âz	$ � %&�Â'	$�
¥
Âo$ �r�Â' %�@ �Ân

Âoa  
 

�r�	
��Ä���Ä��
�Â' %�@ �Â� F��7 � 1�7 �1 � �	
��Ä���Ä���>	 � ��6 � 1�6 �1 � �	
��Ä���Ä���;	 G
�1 � ��7\1 � �	
��Ä���Ä��]>	$ � �6\1 � �	
��Ä���Ä��];	$

¥
Âo$  

 
(34) 

ÆÅÆ7 �r �1 � �� �1 � �	
��Ä���Ä���>	$ Ê7 �@ �1 � �	
��Ä���Ä��� � 1Ë��1 � ��7\1 � �	
��Ä���Ä��]>	$ � �6\1 � �	
��Ä���Ä��];	$�
¥
Âo$ , �35� 

and 
 ÆÅÆ6 �r ��1�λ �1 � �	
��Ä���Ä���;	$ Êα	ln �1 � �	
��Ä���Ä��� � 1Ë��1 � ��7\1 � �	
��Ä���Ä��]>	$ � �6\1 � �	
��Ä���Ä��];	$�

¢
so$ .  

      (36) 
 

 The maximum likelihood estimator ÌÍ��Í, "Î, D̂, %Ð, &Í, 7Í, 6Ð� � of Ì ���, ", D, %, &, 7, 6� is obtained by solving the nonlinear system of equations (30) 
through (36). It is usually more convenient to use nonlinear optimization algorithms 
such as quasi-Newton algorithm to numerically maximize the log-likelihood function. 
 
Maximum product spacing estimates 
The maximum product spacing (MPS) method has been proposed by Cheng and Amin 

[5]. This method is based on an idea that the differences (Spacing) of the consecutive 
points should be identically distributed. The geometric mean of the differences is 
given as 
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 ,� = ÑÁÒÂ¥�$
Âo$

½�� ,  
(37) 

where, the difference ÒÂ is defined as 
 ÒÂ � _ !��, �, ", D, %, &, 7, 6�A���Ä�

��Ä«��
; 				Ô � 1,2, … , @ � 1, (38) 

where, �
��a�, �, , D, ", %, &, 7, 6� � 0 and �
��¥�$�, �, ", D, %, &, 7, 6� � 0. The MPS 
estimators �ÍÖ×, 	"ØÖ×, 	DÙÖ×, 	%ÙÖ×, &ÍÖ×, 7ÍÖ× and	6ÙÖ×  of �, ", D, %, &, 7 and 6 are obtained 
by maximizing the geometric mean (GM) of the differences. Substituting pdf of 
NTAW distribution in (38) and taking logarithm of the above expression, we will 
have 
 log ,� � 1@ � 1r log\�
��Â��, ", D, %, &, 7, 6�¥�$

Âo$� �
��Â	$�, �, ", D, %, &, 7, 6�]. 
 
(39) 

The MPS estimators �ÍÖ×, 	"ØÖ×, 	DÙÖ×, 	%ÙÖ×, &ÍÖ×, 7ÍÖ× and 6ÐÖ× of �, ", D, %, &, 7 and 6can 
be obtained as the simultaneous solution of the following non-linear equations: Æ �Ü- ,�Æ� � 1@ � 1r e�Ý′
��Â�, �, ", D, %, &, 7, 6� � �Ý′
��Â	$�, �, ", D, %, &, 7, 6��
��Â�, �, ", D, %, &, 7, 6� � �
��Â	$�, �, ", D, %, &, 7, 6� f

¥�$
Âo$ � 0,	

Æ �Ü- ,�Æ" � 1@ � 1r e��′ 
��Â�, �, ", Þ, %, &, 7, 6� � ��′ 
��Â	$�, �, ", D, %, &, 7, 6��
��Â�, �, ", D, %, &, 7, 6� � �
��Â	$�, �, ", D, %, &, 7, 6� f
¥�$
Âo$ � 0,	

Æ �Ü- ,�ÆD � 1@ � 1r e�z′
��Â�, �, ", Þ, %, &, 7, 6� � �z′
��Â	$�, �, ", D, %, &, 7, 6��
��Â�, �, ", D, %, &, 7, 6� � �
��Â	$�, �, ", D, %, &, 7, 6� f
¥�$
Âo$ � 0,	

Æ �Ü- ,�Æ% � 1@ � 1r e��′
��Â�, �, ", D, %, &, 7, 6� � ��′
��Â	$�, �, ", D, %, &, 7, 6��
��Â�, �, ", D, %, &, 7, 6� � �
��Â	$�, �, ", D, %, &, 7, 6� f
¥�$
Âo$ � 0,	

Æ �Ü-,�Æ& � 1@ � 1 1@ � 1r e�'′ 
��Â�, �, ", D, %, &, 7, 6� � �'′ 
��Â	$�, �, ", D, %, &, 7, 6��
��Â�, �, ", D, %, &, 7, 6� � �
��Â	$�, �, ", D, %, &, 7, 6� f
¥�$
Âo$ � 0,	

Æ �Ü- ,�Æ7 � 1@ � 1 1@ � 1r e�>′ 
��Â�, �, ", Þ, %, &, 7, 6� � �>′ 
��Â	$�, �, ", D, %, &, 7, 6��
��Â�, �, ", D, %, &, 7, 6� � �
��Â	$�, �, ", D, %, &, 7, 6� f
¥�$
Âo$ � 0,	and	Æ �Ü- ,�Æ6 = 1@ � 1r e�;′ 
��Â�, �, ", D, %, &, 7, 6� � �;′ 
��Â	$�, �, ", D, %, &, 7, 6��
��Â�, �, ", D, %, &, 7, 6� � �
��Â	$�, �, ", Þ, %, &, 7, 6� f

¥�$
Âo$ � 0,		
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Least square estimates 
Let �($), �� �, … , ��¥� be the ordered sample of size @ drawn the NTAW distribution. 
Then, the expectation of the empirical cumulative distribution function is defined as 
 à\�
��Â��] � Ô@ � 1 ; 			Ô � 1,2, … , @. (40) 

The least square estimates �Íá×, "Îá×, D̂á×, %Ðá×, &Íá×, 7Íá× and 6Ðá× of �, ", D, %, &, 7and 6 are 
obtained by minimizing 

â��, ", D, %, &, 7, 6� �rF�
��Â�, �, ", D, %, &, 7, 6� � Ô@ � 1G 
¥
Âo$ .	

Therefore, �Íá×, "Îá×, D̂á×, %Ðá×, &Íá×, 7Íá× and 6Ðá× of �, ", D, %, &, 7and 6 can be obtained as 
the solution of the following system of equations: Æâ��, ", D, %, &, 7, 6�Æ� �r�Ý′
��Â�, �, ", D, %, &, 7, 6� ã�
��Â�, �, ", D, %, &, 7, 6� � Ô@ � 1ä

¥
Âo$ � 0,	

Æâ��, ", D, %, &, 7, 6�Æ" �r��′ 
��Â�, �, ", D, %, &, 7, 6� ã�
��Â�, �, ", D, %, &, 7, 6� � Ô@ � 1ä
¥
Âo$ � 0,	

Æâ��, ", D, %, &, 7, 6�ÆD �r�z′
��Â�, �, ", D, %, &, 7, 6� ã�
��Â�, �, ", D, %, &, 7, 6� � Ô@ � 1ä
¥
Âo$ � 0,	

Æâ��, ", D, %, &, 7, 6�Æ% �r��′
��Â�, �, ", D, %, &, 7, 6� ã�
��Â�, �, ", D, %, &, 7, 6� � Ô@ � 1ä
¥
Âo$ � 0,	

Æâ��, ", D, %, &, 7, 6�Æ& �r�'′ 
��Â�, �, ", D, %, &, 7, 6� ã�
��Â�, �, ", D, %, &, 7, 6� � Ô@ � 1ä
¥
Âo$ � 0,	

Æâ��, ", D, %, &, 7, 6�Æ7 �r�>′ 
��Â�, �, ", D, %, &, 7, 6� ã�
��Â�, �, ", D, %, &, 7, 6� � Ô@ � 1ä
¥
Âo$ � 0, 

and Æâ��, ", D, %, &, 7, 6�Æ6 �r�;′ 
��Â�, �, ", D, %, &, 7, 6� ã�
��Â�, �, ", D, %, &, 7, 6� � Ô@ � 1ä
¥
Âo$ � 0,	

These non-linear can be routinely solved using Newton’s method or fixed point 
iteration techniques. The subroutines to solve non-linear optimization problem are 
available in R [33]. We used nlm( ) package for optimizing (29). 
 
Applications 
In this section, we use two real data sets to to see how the new model works in 
practice.compare the fits of the NTAW distribution with others models. In each case, 
the parameters are estimated by maximum likelihood as described in Section 7, using 
the R code. 
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Data Set 1 
The first data set represents the ages for 155 patients of breast tumors taken from 
(June-November 2014), whose entered in (Breast Tumors Early Detection Unit, 
Benha Hospital University, Egypt). 
 

Table 2: The ages for 155 patients of breast tumors 
 

46 32 50 46 44 42 69 31 25 29 40 42 24 17 35 
48 49 50 60 26 36 56 65 48 66 44 45 30 28 40 
40 50 41 39 36 63 40 42 45 31 48 36 18 24 35 
30 40 48 50 60 52 47 50 49 38 30 52 52 12 48 
50 45 50 50 50 53 55 38 40 42 42 32 40 50 58 
48 32 45 42 36 30 28 38 54 90 80 60 45 40 50 
50 40 50 50 50 60 39 34 28 18 60 50 20 40 50 
38 38 42 50 40 36 38 38 50 50 31 59 40 42 38 
40 38 50 50 50 40 65 38 40 38 58 35 60 90 48 
58 45 35 38 32 35 38 34 43 40 35 54 60 33 35 
36 43 40 45 56           

 
 In order to compare the two distribution models, we consider criteria like −2å, 
AIC (Akaike information criterion), AICC (corrected Akaike information criterion), 
and BIC (Bayesian information criterion) for the data set. The better distribution 
corresponds to smaller�2å, AIC and AICC values: AIC � �2å � 2�, 

AICè � �2å � ã 2�@
@ � � � 1ä, 

and 
BIC � �2å � � log�@�, 

where å denotes the log-likelihood function evaluated at the maximum likelihood 
estimates, � is the number of parameters, and @ is the sample size. 
 Table 3 shows the parameter estimation based on the maximum likelihood and 
gives the values of the criteria AIC, AICC, and BIC test. The values in Table 2 
indicate that the NTAW distribution leads to a better fit over all the other models. 
 
Table 3. MLEs the measures AIC, AICC and BIC test to 155 patients of breast tumors 
data for the models 
 
Model Parameter 

Estimates 
�êëìí AIC AICC BIC 

NTAW J �  �. ��îî�� 601.8007 1217.601 1218.363 1238.905 
K � �. ���ïðQñ 
L � 2.1463001 

M � �. �òóô�� 
N � �. �ññïQ� 
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O � Q. ñõõõõõ 
P � Q. òôïQ�� 

TAW J � �. ��îðõõ 656.6481 1323.296 1323.699 1338.513 
K �. ���Qîôóò 
L � 		Q. ñôðQõõ 
M � �. �òóóõõð 
N � �. �ññïñõõ 

TEMW J � �. �óðïôï 628.6509 1267.302 1267.705 1282.519 
K
� 		�. ��QQ�ïî 

M � �. �QQ�óñõ 
N � �. �îóðï� 

P � 	�. Qôîð�îñ 
EMW K � �. ôóõðQQ 613.903 1235.806 1236.073 1247.98 

M � �. ïQQóî 
N � 	�. õQðQî 
P � ó. îô�ôQ 

AW K � �. ���Qôîï 688.4355 1384.871 1385.138 1397.045 
L � Q. ñôðó�� 
M
� �. �òóóõð�Q 
N � �. ôñïñõòõ 

MW K
� �. ��îQñîï� 

739.2161 1484.432 1484.591 1493.562 

M � �. �ñï�Qò 
N � ñ. �ññó�� 

W M � 	ó. ðòîñ��ô 610.2967 1224.593 1224.672 1230.68 
N
� �. �Q�îòïðQ 
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Figure 5: Estimated densities of the data set 1. 

 
Figure 6: Empirical, fitted NTAW, TAW, TEMW, EMW, MW, Weibull, and AW of 
the data set 1. 

 
Figuren7: Probability plots for NTAW, TAW, TEMW, EMW, MW, Weibull, and 
Additive Weibull of the data set 1. 
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Data Set 2 
The second data set represents failure time of 50 items reported in Aarset [1]. 
 Some summary statistics for the failure time data are as follows: 
 
 
 
 
Table 4. MLEs the measures AIC, AICC and BICS test to failure time data for the 
models 
 

Model Parameter Estimates �êëìí AIC AICC BIC 
NTAW J � ��. �òQQ��óî 213.138 440.2776 442.9443 453.6618 

K � ñ. îîò ∗ ñ�	ï 
L � 	Q. ñï��óó 

M � ò. õQQ ∗ ñ�	ï 
N � 	�. ô�ôQññ 
O � �. óñîðñî 

P � �. ��ïñ�óóï 
TAW J � �. ��îðõõõõòó 229.3821 468.7642 470.1278 478.3243 

K � �. ���ñ�îï� 
L � Q. ñôðó��� 

M � 	�. �òóô����Q 
N � �. ôñïQ����ññ 

TEMW J � ��. ñðô�ðîQ 236.6535 487.6286 488.992 497.1887 
K � �. �ñîðîòñ 

M � �. ��ñõóQõò 
N � 	�. �óõQð�î� 

P � 	�. õôõQôñôðQ 
EMW K � �. �ñòðîóïîñ 238.8143 481.307 482.1959 488.9551 

M � �. ��ñòQQððð 
N � �. �ñ�ï�ïîõò 
P � �. î�óôññð�õ 

AW K � �. ���Qóõõ 237.7583 483.5166 484.4055 491.1647 
L � ñ. òïQò��ðñî 
M � �. �ñðQïïîïï 
N � �. õôîï�îóQôî 

MW K � 	ñ. òQîñõô 241.0289 488.0578 488.5795 493.7939 
M � ñ. ò�ó�õ 

N � ñ. ���Qòò 
W M � �. õôòõïðñ 240.9796 485.959 486.2145 489.7832 

N � 	�. �QQQîïïõ 

Min. 1st Qu. Median Mean 3rd Qu. Max. 
0.10 13.50 48.50 45.67 81.25 86.00 
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 These results indicate that the NTAW model has the lowest AIC and AICC and 
BIC values among the fitted models. The values of these statistics indicate that the 
NTAW model provides the best fit to this data. 

 
Figure 8: Estimated densities of the data set 2. 

 
Figure 9: Empirical, fitted NTAW, TAW, TEMW, EMW, MW, Weibull, and AW of 
the data set 2. 
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Figure 10: Probability plots for NTAW, TAW, TEMW, EMW, MW, Weibull, and 
AW of the data set 2. 
 
 
Conclusions 
There has been a great interest among statisticians and applied researchers in 
constructing flexible lifetime models to facilitate better modeling of survival data. 
Consequently, a significant progress has been made towards the generalization of 
some well-known lifetime models and their successful application to problems in 
several areas. In this paper, we introduce a new transmuted additive Weibull 
distribution obtained using a new family of lifetime distribution as generalization 
technique. We refer to the new model as the NTAW distribution and study some of its 
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mathematical and statistical properties. We provide the pdf, the cdf and the hazard 
rate function of the new model, explicit expressions for the moments. The model 
parameters are estimated by maximum likelihood. The new model is compared with 
some models and provides consistently better fit than other classical lifetime models. 
We hope that the proposed family will serve as a reference and help to advance future 
research in this area. 
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